Chapter 1 (EXCERPT ONLY. First 16 pages of 33 in the chapter)
JavaBeans an Introduction

Objectives

· Knowledge of the Software Components and Software Component Models used.

· Understanding Java Beans as a Black Box.

· Understanding the Basic Structure of a Bean.

· Understanding The Bean Development Kit.

· Knowledge of In-Built Components within the Bean Development Kit.

· Displaying a Simple Animation.

Contents

Overview

 HYPERLINK \l "SoftwareComponents"

Software Components

Visual Software Components

Non-Visual Software Components
Software Component Models

JavaBeans as a Black Box

 HYPERLINK \l "Methods"

Bean Methods

 HYPERLINK \l "Properties"

Bean Properties

 HYPERLINK \l "Events"

Bean Events

 HYPERLINK \l "Environments"

Bean Environments

Basic Structure of a Bean
The Bean Development Kit (BDK)
Starting the BDK
ToolBox Window

The Main Container Window

The PropertySheet Window

The Method Tracer Window
In-Built Components available Within BDK
Displaying a Simple Animation

Overview

JavaBeans is a reusable platform-neutral software component that can be visually manipulated in a soft​ware development tool. This definition consists of two totally independent parts:

· JavaBeans is a platform-neutral software component.

· JavaBeans "knows" about the tools that will manipulate it, and is compatible with those tools.

The JavaBeans standard is a low-level component model tailored to the Java language. It is low-level because it does not hint at or spec​ify the kind of compound document or application framework architectures that some other component standards specify (CORBA, OpenDOC, Taligent, and so on).

JavaBeans concentrates purely on the interface a Java software building block should present, but does not venture into the endless landscape of how such building blocks can or should be combined to create any type of application. However, it does specify how two or more beans can communicate information, but without imposing any semantic rules on the information exchanged or on the topography of any bean communication networks.

Software Components

Software components raise the level of software reuse, moving its emphasis from the level of the skilled programmer to the level of the business application creator. This means software components can be assembled into applications by people skilled in their business, but almost certainly not skilled in programming.

Think of a hi-fi system of separate components. Skilled electronics engineers build each component: amplifier, CD player, speakers, etc., from small parts and integrated circuits, wires, circuit boards, etc. As the user, one is expected to be able to understand the controls and to work out which cable plugs in where. He need not know how the electronic circuitry operates.

There are numerous similarities between a hi-fi system and the idea of computer software built from components. Consider an HTML page, which allows me to select an item from a catalogue and to buy it using a credit card. The publisher builds up the Web page and includes on it three software components. One that takes credit card details, one that allows me to select an item, and one that displays a button with the word "buy" on it.

The constructor of the HTML page knows nothing of how the credit card component verifies its details or of how the transaction component processes the request; the HTML author simply plugs the pieces together to provide the desired end result: a functional Web page.

JavaBeans technology is one such component technology, implemented as an Architecture-Independent and Platform-Independent API (Application Programming Interface) for creating and using dynamic Java software components.

Visual Software Components

Visual software components are software components with visual representation that require a physical space on the display surface of a parent application (more generally referred to as Containers). An example of a visual component is a Button. Buttons are separate entities that can interact with the parent application independently. Visual design tools, or application builder tools provide support to graphically manipulate the buttons that act as discrete self-contained units.

Beyond its visual presence, the button component can be interacted with, programmatically. For instance, a piece of code is executed when the button is pressed. Pressing the button is referred as a user input event. The visual component propagates the user-input events to the containers to know more about the event. The components that are supported by Visual development environment are Checkbox, Listbox and Text Editbox.

Non-Visual Software Components

Non-Visual components sound are ideal uses for software component technologies. A very popular Visual Basic control is a Timer control, which is completely invisible at runtime. It can be set to trigger an event at intervals and is useful in creating Timing Loops such as control animations. The Timer control is used at the programming level and there is no use providing the graphical view of the component at runtime. Generally the applications using the control will not be concerned about how the control is implemented internally.

A Spell-checker component is another example for a non-visual software component. It processes the text and finds the misspelled words. Spell-checker is a self-contained component and can be integrated into any application. This saves the developers of each application the trouble of designing and implementing their own spell checker from scratch. However, the spell-checker functionality is isolated into a self-contained unit that can be plunged into an application with minimal effort.

Software Component Models

A software component model is a specification for how to develop reusable software components and how these component objects can communicate with each other. The Component model defines the architecture of components, which is responsible for determining how the components are able to interact in a dynamic environment and how they can be manipulated and interacted with externally.

The software component model defines two fundamental elements namely,

· Components

· Containers

Components

The component part lays the foundation for different created and used components. A component model is also responsible for providing the following services:

· Introspection: Introspection is the mechanism that exposes the functionality of a component to the outside world.

· Event Handling: An Event is the mechanism that enables a component to generate event notifications which correspond to some change in the internal state of the component.

· Persistence: Persistence is the means by which a component is stored in and retrieved from the non-volatile location.

· Layout: The important part of the component model is the physical layout that is applied only to the visual components. The physical layout is divided into two parts the layout of a component within its own space and with respect to other components sharing space in the same container.

· Application builder support: Application builder support gives users the ability to graphically build complex applications out of components.

· Distributed computing support: Another option to implement Distributed computing is for an object model to lift this support from an existing technology.

Containers

 The container part defines the method of combining components together into useful structures. A container is a context in which components can be grouped together and interacted with. Containers are also referred to as forms, pages, frames or shells and can serve as basis for applications. Containers can also be components themselves because they enable components to be nested within each other, resulting in visual interfaces. Component model provides the template from which the practical components are created.

JavaBeans as a Black Box

We should think of a JavaBeans as a black box, i.e. a software device with known functionality but unknown internal functioning. As such, black boxes are only discussed in terms of their external characteristics (that is, their interface) with the rest of the world: knobs, buttons, numeric or analog readouts, color, shape, openings, handles, and so on.

By thinking of large systems as communication networks that bind together black boxes, we can succeed in controlling system complexity by basically ignoring the bulk of a system's complexity that resides inside its black boxes.

For Example

A PC can still be understood by treating it as a collection of very clearly defined components (black boxes) that communicate with each other using very clearly defined communication protocols. Each PC component can in turn be viewed as a smaller network of components, again communicating via rigid protocols, and so on, until you reach some microscopic level where the hierarchy logically ends.

Java beans have three interface facets that can be developed to independent degrees:

· The methods that can be invoked on a bean

· The readable and/or writeable properties that a bean exposes

· The events a bean can signal to the outside world or accept from it

Bean Methods

A Bean essentially boils down to a Java object (like applets do). Invoking methods on this object is the only way of interacting with it. A Java Bean sticks rigidly to objected-oriented class design philosophy and does not make any of its instance fields accessible to the outside world (no public fields) thus method invocations are the only way to address a bean, its parts, or its behavior.

However, unlike normal classes, the low-level mechanism of invoking an instance method on some bean is not the main way of manipulating or using a bean. Public bean methods are delegated to a secondary role for bean manipulation because two higher-level bean aspects - properties and events - are the preferred way of interacting with a bean.

Therefore, beans can provide public methods you would like your bean's clients to use, but you should realize that bean designers expect to see most of a bean's functionality reflected in its properties and events, and not in separate methods to be invoked manually. Public methods do not need to be "enabled" or "registered" by any JavaBeans API mechanisms.

Bean Properties

Beans use the concept of properties. Properties are conceptually nothing more than the classic attributes objects have, in object-oriented speak but are formally supported by properties reading and setting API.

A clock bean could have "time zone" and "alarm" properties; a calendar bean could have "year" and "month" properties; a mailbox bean could have "mailbox overflow alarm" and "junk mail filter" properties; and so on. Each of these properties would formally come to life by sticking to some simple method naming conventions. This way, tools and end-users can find out which properties a bean features, and can then query their values or change them to manipulate the bean.

Changing properties usually results in an immediate change in the bean to reflect the change. So, using our previous examples, if you change the clock's time zone, the clock face-would immediately redraw itself, showing the current time in the selected time zone. Also, if you changed the year property of the calendar to some year in the future, the calendar would redraw itself to show the current month in that year. Finally, if you lowered the mailbox's overflow alarm below the current level of messages it contained, the mailbox could generate an alarm there and then.

Bean Events

The main way beans communicate information with other software components is by way of firing and receiving events. You should think of a bean's event support as the pins of a 1C: in the electronics world, engineers connect pins together to let their components communicate. Some pins are purely for output (event firing) while others are purely for input (event receiving). Beans can be thought of as having those same type of input/output pins that are to be connected together to create a communicating networks of beans.

Bean Environments

An everyday light is flexible and robust enough to be used in a NASA R&D laboratory, a Las Vegas casino, your kitchen, or outdoors to help light an advertising sign. Generic components get deployed in a vast number of wildly differing environments. As such, they should perform equally well in every one of those environments. The same is true for Java beans. You cannot predict how, where, or when your bean is going to be used or what kind of application in which it will be embedded. However, there are some general facts that we can state:

· A bean always runs in a single Java Virtual Machine (the Java-Beans standard is not a distributed software components standard, like CORBA).

· A bean lives in a multithreaded environment and can therefore be addressed by multiple threads at the same time.

Basic Structure of a Bean

Java Beans as a technology replicates a lot of hopes and expectations as a component software solution. A Bean, like an object in object-oriented technology, is comprised of primary things Data and Methods that act on the data.

A Bean is capable of accessing different types of methods.

· Private Methods: are accessible (accessible means that an application is capable of calling public methods of any components) only within the internals of a beans,

· Protected Methods: are accessible internally and in derived beans.

· Public Methods: Methods with the most accessibility are the public methods, which are accessible internally, from derived beans, and from other applications and components. Public methods have a unique importance because they form the primary means by which the beans can communicate outside through events.

Figure Showing Relationship of Interfaces and Methods

The public methods of Beans are grouped according to their function and these functionally -similar groups of public methods are called Interfaces. An Interface helps the beans in exposing their functionality. It provides support for facilities such as persistence and application builder tool integration. These facilities are supported in the form of additional methods, data and interfaces, which are themselves groups of methods.

The Bean Development Kit(BDK)

JavaSoft, the Sun Microsystems subsidiary responsible for evolving Java and its related APIs, designs, implements, and makes available various Java reference implementations so that licensees and other third parties can validate their own Java ports or those of third-party suppliers. The main Java reference product that JavaSoft produces is the Java Development Kit (JDK). The JDK comprises the reference Java Virtual Machine (JVM), a Java compiler, debugger, profiler, and so on.

JavaSoft also produces the Bean Development Kit (BDK). The BDK plays the same role for the JavaBeans standard as the JDK does for Java itself: it is a reference environment in which to develop and test beans. Further the Bean Development Kit is a tool that allows the user to configure and interconnect a set of beans. The user can change the properties of a Bean, link two or more Beans and execute Beans. BDK also includes a set of demonstration components and their source code.

Note: The Bean Development Kit (BDK) is a Java application. It is necessary to install the Java Development Kit (JDK). The source code for the BDK itself is included in the set of files that are installed.
Data

Private Methods

Protected Methods

Public Methods

Interface A

Interface B

